Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 130: 111704, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38382264

RESUMO

During tendinopathy, prolonged inflammation results in fibrosis and the adherence of tendons to the adjacent tissues, causing discomfort and movement disorders. As a natural compound, noscapine has several anti-inflammatory and anti-fibrotic properties. Therefore, we aimed to investigate the effects of noscapine against a rat model of tendinopathy. We created a surgical rat model of Achilles tendon damage to emulate tendinopathy. Briefly, an incision was made on the Achilles tendon, and it was then sutured using an absorbable surgical thread. Immediately, the injured area was topically treated with the vehicle, noscapine (0.2, 0.6, and 1.8 mg/kg), or dexamethasone (0.1 mg/kg) as a positive control. During the 19-day follow-up period, animals were assessed for weight, behavior, pain, and motor coordination testing. On day 20th, the rats were sacrificed, and the tendon tissue was isolated for macroscopic scoring, microscopic (H&E, Masson's trichrome, Ki67, p53) analyses, and cytokine secretion levels. The levels of macroscopic parameters, including thermal hyperalgesia, mechanical and cold allodynia, deterioration of motor coordination, tendon adhesion score, and microscopic indices, namely histological adhesion, vascular prominence and angiogenesis, and Ki67 and p53 levels, as well as fibrotic and inflammatory biomarkers (IL-6, TNF-α, TGF-ß, VEGF) were significantly increased in the vehicle group compared to the sham group (P < 0.05-0.001 for all cases). In contrast, the administration of noscapine (0.2, 0.6, and 1.8 mg/kg) attenuated the pain, fibrosis, and inflammatory indices in a dose-dependent manner compared to the vehicle group (P < 0.05-0.001). Histological research indicated that noscapine 0.6 and 1.8 mg/kg had the most remarkable healing effects. Interestingly, two higher doses of noscapine had impacts similar to those of the positive control group in both clinical and paraclinical assessments. Taken together, our findings suggested that noscapine could be a promising medicine for treating tendinopathies.


Assuntos
Tendão do Calcâneo , Noscapina , Tendinopatia , Ratos , Animais , Tendinopatia/tratamento farmacológico , Tendão do Calcâneo/patologia , Antígeno Ki-67 , Proteína Supressora de Tumor p53 , Anti-Inflamatórios/uso terapêutico , Dor/patologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Fibrose
2.
Artigo em Inglês | MEDLINE | ID: mdl-38161196

RESUMO

Targeted nanodelivery systems offer a promising approach to cancer treatment, including the most common cancer in women, breast cancer. In this study, a targeted, pH-responsive, and biocompatible nanodelivery system based on nucleolin aptamer-functionalized biogenic titanium dioxide nanoparticles (TNP) was developed for targeted co-delivery of FOXM1 aptamer and doxorubicin (DOX) to improve breast cancer therapy. The developed targeted nanodelivery system exhibited almost spherical morphology with 124.89 ± 12.97 nm in diameter and zeta potential value of - 23.78 ± 3.66 mV. FOXM1 aptamer and DOX were loaded into the nanodelivery system with an efficiency of 100% and 97%, respectively. Moreover, the targeted nanodelivery system demonstrated excellent stability in serum and a pH-responsive sustained drug release profile over a period of 240 h following Higuchi kinetic and Fickian diffusion mechanism. The in vitro cytotoxicity experiments demonstrated that the targeted nanodelivery system provided selective internalization and strong growth inhibition effects of about 45 and 51% against nucleolin-positive 4T1 and MCF-7 breast cancer cell lines. It is noteworthy that these phenomena were not observed in nucleolin-negative cells (CHO). The preclinical studies revealed that a single-dose intravenous injection of the targeted nanodelivery system into 4T1-bearing mice inhibited tumor growth by 1.7- and 1.4-fold more efficiently than the free drug and the non-targeted nanodelivery system, respectively. Our results suggested that the developed innovative targeted pH-responsive biocompatible nanodelivery system could serve as a prospectively potential platform to improve breast cancer treatment.

3.
Braz J Microbiol ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036848

RESUMO

Uropathogenic Escherichia coli (UPEC) have the potential to receive the virulence markers of intestinal pathotypes and transform into various important hybrid pathotypes. This study aimed to investigate the frequency and characteristics of hybrid enteroaggregative E. coli (EAEC)/UPEC strains. Out of 202 UPEC strains, nine (4.5%) were detected as hybrid EAEC/UPEC. These strains carried one to four iron uptake systems. Among nine investigated pathogenicity islands (PAIs), PAI IV536, PAI II536, and PAI ICFT073 were found in 9 (100%), 3 (33.3%), and 1 (11.1%) strains, respectively. The chuA and sitA genes were detected in 5 (55.5%) and 3 (33.3%) hybrid strains, respectively. Six hybrid strains were found to be typical extraintestinal pathogenic E. coli (ExPEC) according to their virulence traits. Most of the hybrid strains belonged to the phylogenetic group E (6/9). Among the hybrid strains, seven (7/9) were able to form biofilm and adhere to cells; however, only two strains penetrated into the HeLa cells. Our findings reveal some of the virulence characteristics of hybrid strains that lead to fitness and infection in the urinary tract. These strains, with virulence factors of intestinal and non-intestinal pathotypes, may become emerging pathogens in clinical settings; therefore, further studies are needed to reveal their pathogenicity mechanisms and so that preventive measures can be taken.

4.
Biofouling ; 38(2): 131-146, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35067121

RESUMO

Pseudomonas aeruginosa is one of the most common biofilm-producing bacteria, often leading to long-term and chronic infections. The LasR regulator protein acts as the central regulator of the quorum sensing (QS) system and coordinates the expression of some virulence and biofilm genes. In this study, novel peptides (WSF, FASK, YDVD) were designed for binding to the domain of the transcriptional activator of the LasR protein and interfere with LasR in the QS system of P. aeruginosa. The effects of these peptides on biofilm production, expression of biofilm-related genes (AlgC, PslA, PelA), and growth of planktonic P. aeruginosa were investigated. All three peptides inhibited the growth of P. aeruginosa planktonic cells at 1600 µg ml-1 and exhibited anti-biofilm effects at sub-inhibitory concentrations (800 µg ml-1). Measurements of the mRNA levels of biofilm-related genes at sub-inhibitory concentrations of the designed peptides showed a significant decrease.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Peptídeos/farmacologia , Fatores de Virulência/metabolismo
5.
Trop Anim Health Prod ; 52(6): 3501-3508, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32929588

RESUMO

Escherichia coli (E.coli) is a normal intestinal microflora of birds, including ostrich. However, some strains are pathogenic to ostrich. There is a lack of knowledge concerning the differences between commensal and pathogenic E.coli isolates of ostrich. This research aimed to characterize the antimicrobial susceptibility profile and virulence gene content of presumptive commensal and pathogenic E.coli isolates of ostrich. A total of 129 bacterial isolates (commensal strains no. = 45; pathogenic strains no. = 84) were obtained from ostriches. The resistance profile of these isolates was investigated by the disk diffusion method and PCR. Also, the strains were screened for virulence-associated genes of avian pathogenic E.coli (APEC). The study showed that the highest and the lowest antimicrobial resistance were against oxytetracycline and gentamicin, respectively. Oxytetracycline, florfenicol, and streptomycin resistance rate in pathogenic isolates were higher than commensal ones (p < 0.05). Also, tetA, blaTEM, and aac(3)-IV resistance genes were more prevalent in pathogenic than commensal isolates (p < 0.05). More than half of the isolates had no virulence-associated genes. The multiplex PCR results showed that irp2 gene was more prevalent in pathogenic than commensal E.coli (p < 0.05). Nevertheless this was not the case with the other genes. Our results indicated a low frequency of antimicrobial resistance and virulence genes in E.coli isolates of ostriches. Antimicrobial susceptibility profile and virulence gene content of E.coli isolates of ostriches differ between presumptive commensal and pathogenic strains. However, more analyses are needed to discriminate these isolates.


Assuntos
Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli/veterinária , Escherichia coli/genética , Escherichia coli/patogenicidade , Doenças das Aves Domésticas/microbiologia , Struthioniformes , Animais , Antibacterianos/farmacologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Irã (Geográfico)/epidemiologia , Fenótipo , Doenças das Aves Domésticas/epidemiologia , Virulência/genética
6.
Front Immunol ; 8: 1077, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955328

RESUMO

Strategies to design delivery vehicles are critical in modern vaccine-adjuvant development. Nanoparticles (NPs) encapsulating antigen(s) and adjuvant(s) are promising vehicles to deliver antigen(s) and adjuvant(s) to antigen-presenting cells (APCs), allowing optimal immune responses against a specific pathogen. In this study, we developed a novel adjuvant delivery approach for induction of efficient in vivo immune responses. Polyethylenimine (PEI) was physically conjugated to poly(lactic-co-glycolic) acid (PLGA) to form PLGA/PEI NPs. This complex was encapsulated with resiquimod (R848) as toll-like receptor (TLR) 7/8 agonist, or monophosphoryl lipid A (MPLA) as TLR4 agonist and co-assembled with cytosine-phosphorothioate-guanine oligodeoxynucleotide (CpG ODN) as TLR9 agonist to form a tripartite formulation [two TLR agonists (inside and outside NPs) and PLGA/PEI NPs as delivery system]. The physicochemical characteristics, cytotoxicity and cellular uptake of these synthesized delivery vehicles were investigated. Cellular viability test revealed no pronounced cytotoxicity as well as increased cellular uptake compared to control groups in murine macrophage cells (J774 cell line). In the next step, PLGA (MPLA or R848)/PEI (CpG ODN) were co-delivered with ovalbumin (OVA) encapsulated into PLGA NPs to enhance the induction of immune responses. The immunogenicity properties of these co-delivery formulations were examined in vivo by evaluating the cytokine (IFN-γ, IL-4, and IL-1ß) secretion and antibody (IgG1, IgG2a) production. Robust and efficient immune responses were achieved after in vivo administration of PLGA (MPLA or R848)/PEI (CpG ODN) co-delivered with OVA encapsulated in PLGA NPs in BALB/c mice. Our results demonstrate a rational design of using dual TLR agonists in a context-dependent manner for efficient nanoparticulate adjuvant-vaccine development.

7.
Int J Pharm ; 515(1-2): 708-720, 2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-27989827

RESUMO

To develop effective and safe vaccines with reduced dose of antigen and adjuvant, intelligent delivery systems are required. Many delivery systems have been developed to enhance the biological activity of cytosine-phosphorothioate-guanine oligodeoxynucleotides (CpG ODN) as both immunotherapeutic agents and vaccine adjuvants. In this study we designed a novel CpG ODN delivery system based on single-walled carbon nanotube (SWCNT) functionalized with polyethylenimine (PEI) and alkylcarboxylated PEI (AL-PEI). The physicochemical characteristics, cytotoxicity and cellular uptake studies of these carriers were performed. All carriers were conjugated with CpG ODN followed by co-delivery with ovalbumin (OVA) encapsulated into poly (lactic-co-glycolic acid) nanospheres (PLGA NSs) to enhance the induction of immune responses. The effect of these formulations on antibody (IgG1, IgG2a) and cytokine (IL-1ß, IFN-γ, IL-4) production was evaluated in an in vivo experiment. The results showed that all nano-adjuvant formulations had a strong influence in up-regulation of IFN-γ and IL-4 in parallel with high IgG1-IgG2a isotype antibody titers in mice. In particular, SWCNT-AL-PEI nano-adjuvant formulation generated a balanced Th1 and Th2 immune response with more biased toward Th1 response without exhibiting any inflammatory and toxic effects. Therefore this nano-adjuvant formulation could be used as an efficient prophylactic immune responses agent.


Assuntos
Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/química , Ovalbumina/administração & dosagem , Células Th1/efeitos dos fármacos , Células Th2/efeitos dos fármacos , Receptor Toll-Like 9/agonistas , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Linhagem Celular , Feminino , Ácido Láctico/administração & dosagem , Ácido Láctico/química , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Nanosferas/administração & dosagem , Nanosferas/química , Nanotubos de Carbono/química , Ovalbumina/química , Ovalbumina/imunologia , Polietilenoimina/administração & dosagem , Polietilenoimina/química , Ácido Poliglicólico/administração & dosagem , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Células Th1/imunologia , Células Th2/imunologia , Receptor Toll-Like 9/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...